MATH2040 Linear Algebra II

Tutorial 10

November 24, 2016

1 Examples:

Example 1

Let $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$, find an orthogonal matrix P and a diagonal matrix D such that $P^*AP = D$.

Solution

Let
$$f(t) = \begin{vmatrix} 2-t & 1 & 1\\ 1 & 2-t & 1\\ 1 & 1 & 2-t \end{vmatrix} = -(t-1)^2(t-4)$$
. So there are two eigenvalues $\lambda_1 = 1$ and $\lambda_2 = 4$.
Since $E_{\lambda_1} = N(A-I) = \operatorname{span}\left\{\begin{pmatrix} -1\\ 0\\ 1 \end{pmatrix}, \begin{pmatrix} -1\\ 1\\ 0 \end{pmatrix}\right\}$ and $E_{\lambda_2} = N(A-4I) = \operatorname{span}\left\{\begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix}\right\}$. So $w_1 = \begin{pmatrix} -1\\ 0\\ 1 \end{pmatrix}$, $w_2 = \begin{pmatrix} -1\\ 1\\ 0 \end{pmatrix}$, $w_3 = \begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix}$ are eigenvectors corresponding to 1,1 and 4 respectively. Then, we need

to use Gram-Schmidt process to convert $\{w_1, w_2, w_3\}$ into an orthogonal set.

Since A is symmetric (and hence normal) we know that eigenvectors of A corresponding to distinct eigenvalues are orthogonal. So we only to need to use Gram-Schmidt process for eigenvectors in the same eigenspace.

Then,
$$u_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$
, $u_2 = \begin{pmatrix} -\frac{1}{2} \\ 1 \\ -\frac{1}{2} \end{pmatrix}$, $u_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ are orthogonal eigenvectors.

Finally, after normalization on $\{u_1, u_2, u_3\}$, we obtain $v_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\0\\1 \end{pmatrix}$, $v_2 = \sqrt{\frac{2}{3}} \begin{pmatrix} -\frac{1}{2}\\1\\-\frac{1}{2} \end{pmatrix}$, $v_3 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\1 \end{pmatrix}$.

Hence, the required matrices
$$P = \begin{pmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{2}\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \\ 0 & \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{2}\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \end{pmatrix}$$
 and $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}$.

Example 2

Let V be a finite-dimensional complex inner product space, and let u be a fixed unit vector in V. Define the Householder operator $H_u: V \to V$ by $H_u(x) = x - 2\langle x, u \rangle u$ for all $x \in V$. Prove the following results:

- (a) H_u is linear.
- (b) $H_u(x) = x$ if and only if x is orthogonal to u.
- (c) $H_u(u) = -u$.
- (d) $H_u^* = H_u$ and $H_u^2 = I$.

Solution

(a) For any $x, y \in V, c \in \mathbb{C}$,

$$H_u(x + cy) = (x + cy) - 2\langle x + cy, u \rangle u$$

= $(x - 2\langle x, u \rangle u) + c(y - 2\langle y, u \rangle u)$
= $H_u(x) + cH_u(y).$

So H_u is linear.

(b) " \Rightarrow " Suppose $H_u(x) = x$. Then, $2\langle x, u \rangle u = 0$. Since u is a fixed unit vector, so $\langle x, u \rangle = 0$ and x is orthogonal to u.

" \leftarrow " Suppose x is orthogonal to u. Then, $\langle x, u \rangle = 0$ and so $2\langle x, u \rangle u = 0$. Therefore, $H_u(x) = x$.

(c) Note u is a unit vector, then $H_u(u) = u - 2\langle u, u \rangle u = u - 2u = -u$.

(d) For any $x, y \in V$,

$$\begin{aligned} \langle x, H_u^*(y) \rangle &= \langle H_u(x), y \rangle \\ &= \langle x - 2 \langle x, u \rangle u, y \rangle \\ &= \langle x, y \rangle - 2 \langle x, u \rangle \langle u, y \rangle \end{aligned}$$

and

$$\langle x, H_u(y) \rangle = \langle x, y - 2\langle y, u \rangle u \rangle$$

= $\langle x, y \rangle - 2\langle x, u \rangle \langle u, y \rangle$

So $H_u^* = H_u$.

And for all $x \in V$

$$H_u^2(x) = H_u(x - 2\langle x, u \rangle u)$$

= $H_u(x) - 2\langle x, u \rangle H_u(u)$
= $x - 2\langle x, u \rangle u - 2\langle x, u \rangle (-u)$
= x

So $H_u^2 = I$, and hence, we can conclude that H_u is a unitary operator on V

Example 3

Let T be a normal operator on a finite-dimensional complex inner product space V. Use the spectral decomposition $T = \lambda_1 T_1 + \lambda_2 T_2 + \cdots + \lambda_k T_k$, where T_i is the orthogonal projection of V on E_{λ_i} , to prove the following results:

(a) If $T^n = T_0$ for some *n*, then $T = T_0$.

(b) $T = -T^*$ if and only if every λ_i is an imaginary number.

Solution

(a) Note, by spectral decomposition, $T^n = (\lambda_1 T_1 + \lambda_2 T_2 + \dots + \lambda_k T_k)^n = \sum_{i=1}^k \lambda_i^n T_i$ since $T_i T_j = \delta_{ij} T_i$. Then, we let v_j to be an eigenvector of T corresponding to λ_j , we have

$$0 = T_0(v_j) = T^n(v_j) = \sum_{i=1}^k \lambda_i^n T_i(v_j) = \lambda_j^n v_j$$

Since v_j is a non-zero vector, so $\lambda_j = 0$ for all j and $T = \sum_{i=1}^k \lambda_i T_i = T_0$.

(b) Note each T_i is self-adjoint, so $T^* = \overline{\lambda_1}T_1 + \overline{\lambda_2}T_2 + \cdots + \overline{\lambda_k}T_k$. Then,

$$T = -T^* \Leftrightarrow T(x) = -T^*(x) \quad \forall x \in V$$

$$\Leftrightarrow \sum_{i=1}^k \lambda_i T_i(x) = -\sum_{i=1}^k \overline{\lambda_i} T_i(x) \quad \forall x \in V$$

$$\Leftrightarrow \sum_{i=1}^k (\lambda_i + \overline{\lambda_i}) T_i(x) = 0 \quad \forall x \in V$$

$$\Leftrightarrow \sum_{i=1}^k 2Re(\lambda_i) T_i(x) = 0 \quad \forall x \in V$$

$$\Leftrightarrow Re(\lambda_i) = 0 \text{ for } 1 \le i \le k$$

2 Exercises:

Question 1 (Section 6.5 Q21):

Let A and B be $n \times n$ complex matrices that are unitarily equivalent.

- (a) Prove that $tr(A^*A) = tr(B^*B)$. (Hint: tr(XY) = tr(YX) for any $n \times n$ matrices X and Y)
- (b) Using (a) to prove that $\sum_{i,j=1}^{n} |A_{ij}|^2 = \sum_{i,j=1}^{n} |B_{ij}|^2$.
- (c) Using (b) to determine whether $\begin{pmatrix} 1 & 2 \\ 2 & i \end{pmatrix}$ and $\begin{pmatrix} i & 4 \\ 1 & 1 \end{pmatrix}$ are unitarily equivalent or not.

Question 2 (Section 6.5 Q30):

Suppose that β and γ are ordered bases for an *n*-dimensional inner product space V. Prove that if Q is a unitary $n \times n$ matrix that changes γ - coordinates into β -coordinates, then β is orthonormal if and only if γ is orthonormal.

Question 3 (Section 6.6 Q6):

Let T be a normal operator on a finite-dimensional inner product space V. Prove that if T is a projection, then T is also an orthogonal projection.

Solution

Question 1

(a) Since A and B are unitarily equivalent, then there exists a unitary matrix P such that $A = P^*BP$. So

$$tr(A^*A) = tr((P^*BP)^*(P^*BP)) = tr((P^*B^*P)(P^*BP)) = tr(P^*B^*BP) = tr(B^*BPP^*) = tr(B^*B) = tr(B^*BP) = tr$$

(b) Note

$$tr(A^*A) = \sum_{i=1}^n (A^*A)_{ii} = \sum_{i=1}^n \sum_{j=1}^n A^*_{ij}A_{ji} = \sum_{i=1}^n \sum_{j=1}^n \overline{A_{ji}}A_{ji} = \sum_{i,j=1}^n |A_{ij}|^2.$$

Similarly, $tr(B^*B) = \sum_{i,j=1}^n |B_{ij}|^2$. Therefore, $\sum_{i,j=1}^n |A_{ij}|^2 = \sum_{i,j=1}^n |B_{ij}|^2$.

(c) Let $A = \begin{pmatrix} 1 & 2 \\ 2 & i \end{pmatrix}$ and $B = \begin{pmatrix} i & 4 \\ 1 & 1 \end{pmatrix}$, then $\sum_{i,j=1}^{2} |A_{ij}|^2 = 10$ and $\sum_{i,j=1}^{2} |B_{ij}|^2 = 19$, so A and B are not unitarily equivalent.

Question 2

We first write $\beta = \{v_1, v_2, ..., v_n\}$ and $\gamma = \{w_1, w_2, ..., w_n\}$.

On one hand, suppose β is an orthonormal ordered basis. As $Q = [I]^{\beta}_{\gamma}$, so $w_i = \sum_{j=1}^n Q_{ji} v_j$. Then,

$$\langle w_i, w_j \rangle = \langle \sum_{k=1}^n Q_{ki} v_k, \sum_{l=1}^n Q_{lj} v_l \rangle$$
$$= \sum_{k=1}^n Q_{ki} \overline{Q_{kj}}$$
$$= \delta_{ij}$$

because $\sum_{k=1}^{n} Q_{ki} \overline{Q_{kj}}$ is the inner product of *i*-th column and *j*-th column of the unitary matrix Q. Therefore, γ is also an orthonormal ordered basis.

On the other hand, since Q is unitary, so $Q^* = [I]^{\gamma}_{\beta}$ is also unitary. By the similar technique above, we can also show β is orthonormal given that γ is orthonormal.

Question 3

By definition, given that T is a projection, T is an orthogonal projection if $R(T)^{\perp} = N(T)$ and $R(T) = N(T)^{\perp}$. Since V is finite-dimensional, so it is sufficient to show $R(T)^{\perp} = N(T)$ only.

On one hand, for any $x \in R(T)^{\perp}$,

$$\langle T(x), T(y) \rangle = \langle x, T^*T(y) \rangle = \langle x, T(T^*(y)) \rangle = 0 \quad \forall y \in V$$

since T is normal and $x \in R(T)^{\perp}$. So $x \in N(T)$.

On the other hand, for any $x \in N(T)$,

$$\langle x, T(y) \rangle = \langle T^*(x), y \rangle = 0 \quad \forall y \in V$$

since T is normal and $||T^*(x)|| = ||T(x)|| = 0$ implies $T^*(x) = 0$. So $x \in R(T)^{\perp}$.