MATH2040 Linear Algebra II

Tutorial 10

November 24, 2016

1 Examples:

Example 1

Let $A=\left(\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right)$, find an orthogonal matrix P and a diagonal matrix D such that $P^{*} A P=D$.

Solution

Let $f(t)=\left|\begin{array}{ccc}2-t & 1 & 1 \\ 1 & 2-t & 1 \\ 1 & 1 & 2-t\end{array}\right|=-(t-1)^{2}(t-4)$. So there are two eigenvalues $\lambda_{1}=1$ and $\lambda_{2}=4$.
Since $E_{\lambda_{1}}=N(A-I)=\operatorname{span}\left\{\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)\right\}$ and $E_{\lambda_{2}}=N(A-4 I)=\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$. So $w_{1}=$ $\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right), w_{2}=\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right), w_{3}=\left(\begin{array}{c}1 \\ 1 \\ 1\end{array}\right)$ are eigenvectors corresponding to 1,1 and 4
to use Gram-Schmidt process to convert $\left\{w_{1}, w_{2}, w_{3}\right\}$ into an orthogonal set.
Since A is symmetric (and hence normal) we know that eigenvectors of A corresp
are orthogonal. So we only to need to use Gram-Schmidt process for eigenvectors in
Then, $u_{1}=\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right), u_{2}=\left(\begin{array}{c}-\frac{1}{2} \\ 1 \\ -\frac{1}{2}\end{array}\right), u_{3}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ are orthogonal eigenvectors.

Finally, after normalization on $\left\{u_{1}, u_{2}, u_{3}\right\}$, we obtain $v_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right), v_{2}=\sqrt{\frac{2}{3}}\left(\begin{array}{c}-\frac{1}{2} \\ 1 \\ -\frac{1}{2}\end{array}\right), v_{3}=\frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.
Hence, the required matrices $P=\left(\begin{array}{ccc}-\frac{1}{\sqrt{2}} & -\frac{1}{2} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \\ 0 & \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{2} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}}\end{array}\right)$ and $D=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4\end{array}\right)$.

Example 2

Let V be a finite-dimensional complex inner product space, and let u be a fixed unit vector in V. Define the Householder operator $H_{u}: V \rightarrow V$ by $H_{u}(x)=x-2\langle x, u\rangle u$ for all $x \in V$. Prove the following results:
(a) H_{u} is linear.
(b) $H_{u}(x)=x$ if and only if x is orthogonal to u.
(c) $H_{u}(u)=-u$.
(d) $H_{u}^{*}=H_{u}$ and $H_{u}^{2}=I$.

Solution

(a) For any $x, y \in V, c \in \mathbb{C}$,

$$
\begin{aligned}
H_{u}(x+c y) & =(x+c y)-2\langle x+c y, u\rangle u \\
& =(x-2\langle x, u\rangle u)+c(y-2\langle y, u\rangle u) \\
& =H_{u}(x)+c H_{u}(y) .
\end{aligned}
$$

So H_{u} is linear.
(b) " \Rightarrow " Suppose $H_{u}(x)=x$. Then, $2\langle x, u\rangle u=0$. Since u is a fixed unit vector, so $\langle x, u\rangle=0$ and x is orthogonal to u.
$" \Leftarrow "$ Suppose x is orthogonal to u. Then, $\langle x, u\rangle=0$ and so $2\langle x, u\rangle u=0$. Therefore, $H_{u}(x)=x$.
(c) Note u is a unit vector, then $H_{u}(u)=u-2\langle u, u\rangle u=u-2 u=-u$.
(d) For any $x, y \in V$,

$$
\begin{aligned}
\left\langle x, H_{u}^{*}(y)\right\rangle & =\left\langle H_{u}(x), y\right\rangle \\
& =\langle x-2\langle x, u\rangle u, y\rangle \\
& =\langle x, y\rangle-2\langle x, u\rangle\langle u, y\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
\left\langle x, H_{u}(y)\right\rangle & =\langle x, y-2\langle y, u\rangle u\rangle \\
& =\langle x, y\rangle-2\langle x, u\rangle\langle u, y\rangle
\end{aligned}
$$

So $H_{u}^{*}=H_{u}$.
And for all $x \in V$

$$
\begin{aligned}
H_{u}^{2}(x) & =H_{u}(x-2\langle x, u\rangle u) \\
& =H_{u}(x)-2\langle x, u\rangle H_{u}(u) \\
& =x-2\langle x, u\rangle u-2\langle x, u\rangle(-u) \\
& =x
\end{aligned}
$$

So $H_{u}^{2}=I$, and hence, we can conclude that H_{u} is a unitary operator on V

Example 3

Let T be a normal operator on a finite-dimensional complex inner product space V. Use the spectral decomposition $T=\lambda_{1} T_{1}+\lambda_{2} T_{2}+\cdots+\lambda_{k} T_{k}$, where T_{i} is the orthogonal projection of V on $E_{\lambda_{i}}$, to prove the following results:
(a) If $T^{n}=T_{0}$ for some n, then $T=T_{0}$.
(b) $T=-T^{*}$ if and only if every λ_{i} is an imaginary number.

Solution

(a) Note, by spectral decomposition, $T^{n}=\left(\lambda_{1} T_{1}+\lambda_{2} T_{2}+\cdots+\lambda_{k} T_{k}\right)^{n}=\sum_{i=1}^{k} \lambda_{i}^{n} T_{i}$ since $T_{i} T_{j}=\delta_{i j} T_{i}$. Then, we let v_{j} to be an eigenvector of T corresponding to λ_{j}, we have

$$
0=T_{0}\left(v_{j}\right)=T^{n}\left(v_{j}\right)=\sum_{i=1}^{k} \lambda_{i}^{n} T_{i}\left(v_{j}\right)=\lambda_{j}^{n} v_{j} .
$$

Since v_{j} is a non-zero vector, so $\lambda_{j}=0$ for all j and $T=\sum_{i=1}^{k} \lambda_{i} T_{i}=T_{0}$.
(b) Note each T_{i} is self-adjoint, so $T^{*}=\overline{\lambda_{1}} T_{1}+\overline{\lambda_{2}} T_{2}+\cdots+\overline{\lambda_{k}} T_{k}$. Then,

$$
\begin{aligned}
T=-T^{*} & \Leftrightarrow T(x)=-T^{*}(x) \quad \forall x \in V \\
& \Leftrightarrow \sum_{i=1}^{k} \lambda_{i} T_{i}(x)=-\sum_{i=1}^{k} \overline{\lambda_{i}} T_{i}(x) \quad \forall x \in V \\
& \Leftrightarrow \sum_{i=1}^{k}\left(\lambda_{i}+\overline{\lambda_{i}}\right) T_{i}(x)=0 \quad \forall x \in V \\
& \Leftrightarrow \sum_{i=1}^{k} 2 \operatorname{Re}\left(\lambda_{i}\right) T_{i}(x)=0 \quad \forall x \in V \\
& \Leftrightarrow \operatorname{Re}\left(\lambda_{i}\right)=0 \text { for } 1 \leq i \leq k
\end{aligned}
$$

2 Exercises:

Question 1 (Section 6.5 Q21):

Let A and B be $n \times n$ complex matrices that are unitarily equivalent.
(a) Prove that $\operatorname{tr}\left(A^{*} A\right)=\operatorname{tr}\left(B^{*} B\right)$. (Hint: $\operatorname{tr}(X Y)=\operatorname{tr}(Y X)$ for any $n \times n$ matrices X and $\left.Y\right)$
(b) Using (a) to prove that $\sum_{i, j=1}^{n}\left|A_{i j}\right|^{2}=\sum_{i, j=1}^{n}\left|B_{i j}\right|^{2}$.
(c) Using (b) to determine whether $\left(\begin{array}{ll}1 & 2 \\ 2 & i\end{array}\right)$ and $\left(\begin{array}{ll}i & 4 \\ 1 & 1\end{array}\right)$ are unitarily equivalent or not.

Question 2 (Section 6.5 Q30):
Suppose that β and γ are ordered bases for an n-dimensional inner product space V. Prove that if Q is a unitary $n \times n$ matrix that changes γ-coordinates into β-coordinates, then β is orthonormal if and only if γ is orthonormal.

Question 3 (Section 6.6 Q6):
Let T be a normal operator on a finite-dimensional inner product space V. Prove that if T is a projection, then T is also an orthogonal projection.

Solution

Question 1

(a) Since A and B are unitarily equivalent, then there exists a unitary matrix P such that $A=P^{*} B P$. So

$$
\operatorname{tr}\left(A^{*} A\right)=\operatorname{tr}\left(\left(P^{*} B P\right)^{*}\left(P^{*} B P\right)\right)=\operatorname{tr}\left(\left(P^{*} B^{*} P\right)\left(P^{*} B P\right)\right)=\operatorname{tr}\left(P^{*} B^{*} B P\right)=\operatorname{tr}\left(B^{*} B P P^{*}\right)=\operatorname{tr}\left(B^{*} B\right)
$$

(b) Note

$$
\operatorname{tr}\left(A^{*} A\right)=\sum_{i=1}^{n}\left(A^{*} A\right)_{i i}=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j}^{*} A_{j i}=\sum_{i=1}^{n} \sum_{j=1}^{n} \overline{A_{j i}} A_{j i}=\sum_{i, j=1}^{n}\left|A_{i j}\right|^{2}
$$

Similarly, $\operatorname{tr}\left(B^{*} B\right)=\sum_{i, j=1}^{n}\left|B_{i j}\right|^{2}$. Therefore, $\sum_{i, j=1}^{n}\left|A_{i j}\right|^{2}=\sum_{i, j=1}^{n}\left|B_{i j}\right|^{2}$.
(c) Let $A=\left(\begin{array}{ll}1 & 2 \\ 2 & i\end{array}\right)$ and $B=\left(\begin{array}{cc}i & 4 \\ 1 & 1\end{array}\right)$, then $\sum_{i, j=1}^{2}\left|A_{i j}\right|^{2}=10$ and $\sum_{i, j=1}^{2}\left|B_{i j}\right|^{2}=19$, so A and B are not unitarily equivalent.

Question 2

We first write $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $\gamma=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$.

On one hand, suppose β is an orthonormal ordered basis. As $Q=[I]_{\gamma}^{\beta}$, so $w_{i}=\sum_{j=1}^{n} Q_{j i} v_{j}$. Then,

$$
\begin{aligned}
\left\langle w_{i}, w_{j}\right\rangle & =\left\langle\sum_{k=1}^{n} Q_{k i} v_{k}, \sum_{l=1}^{n} Q_{l j} v_{l}\right\rangle \\
& =\sum_{k=1}^{n} Q_{k i} \overline{Q_{k j}} \\
& =\delta_{i j}
\end{aligned}
$$

because $\sum_{k=1}^{n} Q_{k i} \overline{Q_{k j}}$ is the inner product of i-th column and j-th column of the unitary matrix Q. Therefore, γ is also an orthonormal ordered basis.

On the other hand, since Q is unitary, so $Q^{*}=[I]_{\beta}^{\gamma}$ is also unitary. By the similar technique above, we can also show β is orthonormal given that γ is orthonormal.

Question 3

By definition, given that T is a projection, T is an orthogonal projection if $R(T)^{\perp}=N(T)$ and $R(T)=N(T)^{\perp}$. Since V is finite-dimensional, so it is sufficient to show $R(T)^{\perp}=N(T)$ only.

On one hand, for any $x \in R(T)^{\perp}$,

$$
\langle T(x), T(y)\rangle=\left\langle x, T^{*} T(y)\right\rangle=\left\langle x, T\left(T^{*}(y)\right)\right\rangle=0 \quad \forall y \in V
$$

since T is normal and $x \in R(T)^{\perp}$. So $x \in N(T)$.
On the other hand, for any $x \in N(T)$,

$$
\langle x, T(y)\rangle=\left\langle T^{*}(x), y\right\rangle=0 \quad \forall y \in V
$$

since T is normal and $\left\|T^{*}(x)\right\|=\|T(x)\|=0$ implies $T^{*}(x)=0$. So $x \in R(T)^{\perp}$.

